منوعات

في المثلث القائم الزاوية المقابل اذا كانا طول ساقيه 8 ،6 فأوجدي طول الوتر ج.

في المثلث القائم الزاوية المقابل اذا كانا طول ساقيه 8 ،6 فأوجدي طول الوتر ج.

في الرياضيات ، فإن نظرية فيثاغورس ، المعروفة باسم نظرية فيثاغورس ، هي العلاقة الأساسية بين أضلاع المثلث القائم في الهندسة الإقليدية. تنص على أن مجموع المربعات على جانبي الزاوية القائمة يساوي مربع طول الوتر. يمكن كتابة النظرية في صورة معادلة تتعلق بطول ضلع المثلث ABC. سميت هذه النظرية على اسم العالم فيثاغورس ، عالم الرياضيات والفيلسوف وعالم الفلك في اليونان القديمة .

تسمح لك نظرية فيثاغورس بحساب طول أحد أضلاع المثلث القائم الزاوية من خلال معرفة طول الضلعين الآخرين. على سبيل المثال: إذا كان ب = 3 و أ = 4 إذن {\ displaystyle a ^ {2} + b ^ {2} = 3 ^ {2} + 4 ^ {2} = 25 = c ^ {2} \،} حيث {\ displaystyle c = 5 \،}.

أي ثلاثة أعداد صحيحة تمثل طول ضلع مثلث قائم الزاوية – على سبيل المثال (3 ، 4 ، 5) – شكل ثلاثي فيثاغورس. نظرية فيثاغورس العكسي نص نظرية فيثاغورس المعكوسة (الجملة 47 من الجزء الأول من كتاب العناصر لإقليدس): في المثلث ، إذا كان مربع أطول ضلع يساوي مجموع مربعي الضلعين الآخرين ، فإن المثلث هو مثلث قائم الزاوية. الزاوية القائمة هي الزاوية المقابلة للضلع الأطول ، والضلع الأطول هو الوتر. » نظرية فيثاغورس هي سمة من سمات المثلثات القائمة. بعبارة أخرى: “في المثلث ABC ، ​​إذا كان AC² + BC² = AB² ، فهذا المثلث هو الزاوية القائمة عند C.”

أما بالنسبة لجواب سؤالنا في هذا المقال في المثلث القائم الزاوية المقابل اذا كانا طول ساقيه 8 ،6 فأوجدي طول الوتر ج. ؟؟ طول الوتر ج يساوي 10

مقالات ذات صلة

اترك تعليقاً

لن يتم نشر عنوان بريدك الإلكتروني.

زر الذهاب إلى الأعلى
error: غير مسموح