منوعات

ما محيط مثلث قائم الزاوية طول وتره 10سم  وطول إحدى ساقيه 9 سم

ما محيط مثلث قائم الزاوية طول وتره 10سم  وطول إحدى ساقيه 9 سم

محيط المثلث القائم المثلث الأيمن باستخدام القانون العام ، يمكن حساب محيط المثلث بأضلاعه أ ، ب ، ج عن طريق حساب مجموع هذه الأطوال ، كما هو موضح أدناه: [1] محيط المثلث = أ + ب + ج ، حيث: أ ، ب: هما أطوال أضلاع القائمة. الجواب: هو طول وتر المثلث القائم. باستخدام نظرية فيثاغورس ، يمكن التعبير عن القانون بطريقة أخرى ، على النحو التالي: [1] تنص نظرية فيثاغورس على أن مجموع مربعات أضلاع الزاوية القائمة يساوي مربع طول الزاوية القائمة و الوتر ، وهو: C² = A² + B² ، لذا G = (A² + b²) √. عوّض بقيمة الوتر في قانون المحيط: محيط المثلث القائم الزاوية = A + B + C ، محيط المثلث هو: محيط المثلث القائم الزاوية = A + B + (A² + B² ) √ لتجنب معرفة الوتر احسب محيط المثلث في حالة ؛ حيث: أ ، ب: طول ضلعي القائمةكيفية حساب محيط المثلث القائم: باستخدام القانون العام ، يمكن حساب محيط المثلث بأضلاعه أ ، ب ، ج عن طريق حساب مجموع هذه الأطوال ، على النحو التالي: [1] محيط المثلث = أ + ب + ج ، حيث: أ و ب هما الطولان على جانبي القائمة. الجواب: هو طول وتر المثلث القائم. باستخدام نظرية فيثاغورس ، يمكن التعبير عن هذا القانون بطريقة أخرى ، على النحو التالي: [1] تنص نظرية فيثاغورس على أن مربع طول ضلعي الزاوية القائمة يساوي مربع طول الوتر ، أي: C² = A² + B² ، إذن G = (A² + b²) √. عوّض بقيمة الوتر في قانون المحيط: محيط المثلث القائم الزاوية = A + B + C ، محيط المثلث هو: محيط المثلث القائم الزاوية = A + B + (A² + B² ) √ وذلك لتجنب معرفة الوتر في حالة حساب محيط المثلث ؛ حيث: أ ، ب: طول ضلعي القائمة.

 

أمثلة لحساب محيط مثلث قائم الزاوية

 

فيما يلي أمثلة متنوعة لحساب محيط مثلث قائم الزاوية: المثال الأول: طول ضلع مثلث قائم الزاوية هو: 3 ، 4 ، 5 سم ، جد محيطه [2] الحل: بتطبيق القانون: محيط المثلث = مجموع أطوال أضلاعه = أ + ب + ج = 3 + 4 + 5 = 12 سم. المثال الثاني: أضلاع مثلث قائم الزاوية هي: 6 ، 8 ، 10 م ، أوجد محيطه. [2] الحل: طبق القانون: محيط المثلث = مجموع أطوال الأضلاع = أ + ب + ج = 6 + 8 + 10 = 24 م. المثال الثالث: الطول (ب) للمثلث القائم الزاوية يساوي 4/3 من طول الضلع الآخر (أ) ، وطول الوتر (ج) يساوي 30 م. ما طول ضلعي الطرف الأيمن ومحيط المثلث القائم الزاوية؟ [1] الحل: افترض أن الجانب أ = س ، ثم الجانب ب = 4 / 3xx. طبق نظرية فيثاغورس لإيجاد الأطوال على جانبي القائمة على النحو التالي: c² = a² + b²، 30² = x² + (4/3 xx) ²، x² + (16/9) x² = 900، 25/9 x² = 900 ، حل المعادلة: س = 18 م ، لذا طول الضلع (أ) = 18 م. طول الضلع (ب) = 4/3 × × = 4/3 × 18 = 24 م. محيط المثلث = مجموع أطوال أضلاعه ، ويمكن حساب المحيط كالتالي: محيط المثلث = أ + ب + ج = 18 + 24 + 30 = 72 م.

مقالات ذات صلة

اترك تعليقاً

لن يتم نشر عنوان بريدك الإلكتروني.

زر الذهاب إلى الأعلى
error: غير مسموح